Non archimedean metric induced fuzzy uniform spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Archimedean Metric Induced Fuzzy Uniform Spaces

It is shown that the category of non-Archimedean metric spaces with l-Lipschitz maps can be embedded as a coreflectlve non-bireflective subcategory in the category of fuzzy uniform spaces. Consequential characterizations of topological and unif’orm properties are derived.

متن کامل

Non-Archimedean fuzzy metric spaces and Best proximity point theorems

In this paper, we introduce some new classes of proximal contraction mappings and establish  best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...

متن کامل

Semi-compatibility in Non-Archimedean Fuzzy Metric spaces

A. George and P. Veeramani, 1994. On some results in fuzzy metric space, Fuzzy Sets and Systems, vol. 64, 395-399. B. Schweizer, H. Sherwood, and R. M. Tardi®,1988. Contractions on PMspace examples and counter examples, Stochastica vol. 1, 5–17. D. Mihet, 2004. A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, vol. 144, 431–439. D. Mihet, 2008. Fuzzy -contractive mapp...

متن کامل

Gromov-Hausdorff convergence of non-Archimedean fuzzy metric spaces

We introduce the notion of the Gromov-Hausdorff fuzzy distance between two non-Archimedean fuzzy metric spaces (in the sense of Kramosil and Michalek). Basic properties involving convergence and the fuzzy version of the completeness theorem are presented. We show that the topological properties induced by the classic Gromov-Hausdorff distance on metric spaces can be deduced from our approach.

متن کامل

On metric spaces induced by fuzzy metric spaces

For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm,  we present a method to construct a metric on a  fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space.  Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 1989

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171289000062